A TRANSAMINATIVE SYNTHESIS OF 9-AMINO-9-FLUORENECARBOXYLIC ACID ESTERS

Mark T. DuPriest, Raymond E. Conrow* and Daniel Kuzmich

Medicinal Chemistry Department, Alcon Laboratories, Inc., Fort Worth, Texas 76134 USA

Summary. The benzyl imines of several fluorenones were treated with base, followed by methyl chloroformate, to introduce the carbomethoxy group at the 9-fluorenyl position. Imine hydrolysis afforded the title compounds. The reaction was readily conducted on a 30-g scale.

Glycine esters (1, $Z = CO_2R$) can be conveniently elaborated into higher α -amino acid esters 3 by conversion to their N-arylidene derivatives followed by alkylation (Scheme I, 2 = PhCHO or Ph_2CO).^{1a,b} With few exceptions,^{1c} the process occurs without allylic rearrangement (path A). The same regiochemistry prevails if $Z = CN^{2a}$ or C=CSiMe₃.^{2b} By contrast, in biomimetic transamination reactions,³ an appropriate choice of substituents promotes tautomerization (path B, R³ = H), to interconvert amines and carbonyl compounds as in the biosynthesis of α -amino acids (2->4, R² = CO₂H, R³ = H). Herein we report a new variant in which 2 is a fluorenone, Z is phenyl, and R³X is methyl chloroformate. The reaction follows path B to afford a practical, high-yielding synthesis of 9-amino-9-fluorenecarboxylic acid esters (4, R³ = CO₂CH₃).

Scheme I

In the course of research on fluorenone-derived spirohydantoins as aldose reductase inhibitors for treatment of chronic complications of diabetes,⁴ we required 25 g of each enantiomer of 8 (Scheme II). Attempts to resolve racemic 8, prepared by Bucherer-Bergs reaction on fluorenone 5,^{5a} were unsuccessful. Racemic amino ester 7, however, could be resolved efficiently by preparative HPLC on a Chiralcel OF cellulose carbamate - silica gel column,^{5b} using 2 : 1 hexane: *i*-PrOH eluant.^{5c} The resolved enantiomers of 7 were converted as shown^{6a} to (+)-8 and (-)-8.

We therefore devised the streamlined^{6b} transamination-carbomethoxylation sequence 5->6->7. Ketone 5 was treated with benzylamine and TiCl₄, ^{9a} both in 25% excess, to give imine 6 (94%). A solution of 6 in anhydrous THF¹⁰ was treated with sodium hydride, generating a deep red anion. Addition of methyl chloroformate, followed by acidic hydrolysis, afforded 7 in 82% yield after purification. This method proved convenient for preparing 7 in 20 - 25 g lots. Starting ketone 5 (~5%) and amine 10 (~2%) were consistently obtained as side products, despite the use of excess base. These may arise from carbomethoxylation at the benzylic position (i.e., path A), followed by deprotonation to form a stable imino ester anion which is hydrolyzed on workup. However, no α -phenylglycine methyl ester (3, path A) was detected in the crude product.

2960

To test the scope of the process, amino esters **11** - **13** were prepared from the corresponding fluorenones. Yields shown are for the carbomethoxylation/hydrolysis step. The fluoro compounds **11** and **12** were readily secured by the procedure described above. In the unsubstituted case, LDA was required to form the anion efficiently, and the product **13**⁸^c was obtained in diminished yield.¹¹

That the reaction occurs principally at the 9-fluorenyl position is consistent with the expected charge distribution in the delocalized anion. Fortunately, the fluoro substituents brought the acidity of **6** into a convenient range.¹² Finally, these results suggest that substituted fluorenones may find further use as reagents for converting amines to carbonyl compounds.

Imine 6.^{9a} TiCl₄ (1.0 M in CH₂Cl₂, 127 mL) was added dropwise over 15 min to a stirred suspension of ketone **5** (50.0 g, 0.203 mol) and benzylamine (81 g, 0.76 mol) in 1.0 L of CH₂Cl₂ under N₂, keeping the temperature below 15 °C.^{9b} The mixture was stirred for 30 min while warming to 24 °C, then filtered through Florisil, washing with 4 L of ether. The filtrate was concentrated to 500 mL and diluted with 500 mL of hexane. The precipitated yellow imine **6** was collected by filtration. The filtrate was further concentrated to provide a second and third crop. The combined yield of **6** after drying was 64.0 g (94%, 5 : 4 mixture of double bond isomers).

Amino ester 7. Imine 6 (30.0 g, 0.0896 mol) was added in portions, over 5 min, to a stirred suspension of NaH (4.5 g of a 60% oil dispersion, 0.11 mol, 2 x hexane washed) in 300 mL of anhydrous THF¹⁰ at 45 °C under N₂. Hydrogen evolution ceased after 20 min; the mixture was stirred for an additional 20 min, then cooled to 10 °C. A solution of $CICO_2CH_3$ (21 mL, 0.27 mol) in 40 mL of anhydrous THF¹⁰ was stirred over anhydrous K₂CO₃ under N₂ for 1 min, decanted, and added, keeping the temperature below 12 °C. The mixture was stirred for 1 h while warming to 24 °C, then cooled to 10 °C, quenched with 100 mL of 1 N HCl, and stirred (to 24 °C) for 1 h. The mixture was diluted with 500 mL of 1 : 1 ether-hexane and the amine hydrochloride was extracted with 1 N HCl. The aqueous solution was basified (NaHCO₃) and the precipitated product was collected by filtration. The solid was dissolved in 800 mL of EtOAc and the solution was triturated with ether, then recrystallized (EtOAc-hexane), affording 20.7 g (76%) of 7, m.p. 153-155 °C. The supernatant was concentrated and the residue chromatographed on silica (CH₂Cl₂ --> 5% CH₃OH in CH₂Cl₂) to give an additional 1.6 g (6%) of 7, m.p. 150-152 °C.

References and Notes

- 1. (a) O'Donnell, M. J.; Bennett, W. D.; Shengde Wu J. Am. Chem. Soc. 1989, 111, 2353, and cited references.
 - (b) Stork, G.; Leong, A. Y. W.; Touzin, A. M. J. Org. Chem. 1976, 41, 3491.
 - (c) Harris, C. J. *Tetrahedron Lett.* **1981**, *22*, 4863. Bey, P.; Ducep, J. B.; Schirlin, D. *Tetrahedron Lett.* **1984**, *25*, 5657. Compare: Baldwin, J. E.; Adlington, R. M.; Bottaro, J. C.; Kolhe, J. N.; Perry, M. W. D.; Jain, A. U. *Tetrahedron* **1986**, *42*, 4223, and following papers.
- (a) O'Donnell, M. J.; Eckrich, T. M. *Tetrahedron Lett.* **1978**, 4625.
 (b) Metcalf, B. W.; Bey, P.; Danzin, C.; Jung, M. J.; Casara, P.; Vevert, J. P. *J. Am. Chem. Soc.* **1978**, 100, 2551.
- 3. Buckley, T. F.; Rapoport, H. J. Am. Chem. Soc. 1982, 104, 4446.
- 4. York, B., U.S. Patent 4,540,700. Humber, L. G. Prog. Med. Chem. 1987, 24, 299.
- (a) American Tokyo Kasei, Inc.
 (b) Okamoto, Y.; Kawashima, M.; Hatada, K. J. Chromatogr. 1986, 363, 173. Idem., J. Am. Chem. Soc. 1984, 106, 5357.

(c) Separation performed by Daicel Chemical Industries, Ltd., New York.

(a) Experimental details, physical properties of (+)-7, (-)-7, (+)-8 and (-)-8, and biological properties of (+)-8 and (-)-8, will be provided in a separate paper.

(b) Racemic 7 was first prepared from ketone 5 by a lengthy route: (1) H₂NNH₂, (HOCH₂CH₂)₂O,

180 °C ⁷ (2) BuLi, THF; CO₂ (3) CH₃OH, H⁺ (giving ester **9**) (4) NaH, THF, 0 °C; NCS, -70 °C (5) NaN₃, DMF (6) cyclohexene, EtOH, 10% Pd-C, reflux. Alternatively, gram-scale reactions of sodio-**9** with the O-mesitylenesulfonyl^{8a,b} or -2,4-dinitrophenyl^{8c} derivatives of hydroxylamine gave **7** in good yields, and shortened the process to four steps, but scaleup proved impractical.

- 7. DuPriest, M. T.; Schmidt, C. L.; Kuzmich, D.; Williams, S. B. J. Org. Chem. 1986, 51, 2021.
- 8. (a) Carpino, L. A. J. Am. Chem. Soc. 1960, 82, 3133.
 - (b) Krause, J. G. Synthesis 1972, 140.
 - (c) Sheradsky, T. Salemnick, G. Nir, Z. Tetrahedron 1972, 28, 3833.
- (a) Fieser and Fieser, "Reagents for Organic Synthesis" 2, 414; 3, 291.
 (b) If the temperature exceeded 15 °C during the addition of benzylamine, a side product with spectra
 - suggesting the dibenzyl aminal of 5 was also produced.
- 10. Best results were obtained using THF dried over LiAIH₄ under N₂ and distilled into the reaction flask.
- Amino esters 7, 11 (m.p. 128-129 ^oC), 12 (m.p. 82-84 ^oC) and 13 (m.p. 107-108 ^oC, lit.^{8C} m.p. 113 ^oC) were fully characterized by ¹H NMR, IR, MS and combustion analysis. The precursor imines gave satisfactory ¹H NMR (and for 6, IR) spectra.
- 12. Bordwell, F. G.; McCollum, G. J. J. Org. Chem. 1976, 41, 2391; also see footnote 7g in reference 1a above.

(Received in USA 12 February 1990; accepted 4 April 1990)